If it's not what You are looking for type in the equation solver your own equation and let us solve it.
70x^2-40=0
a = 70; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·70·(-40)
Δ = 11200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11200}=\sqrt{1600*7}=\sqrt{1600}*\sqrt{7}=40\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{7}}{2*70}=\frac{0-40\sqrt{7}}{140} =-\frac{40\sqrt{7}}{140} =-\frac{2\sqrt{7}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{7}}{2*70}=\frac{0+40\sqrt{7}}{140} =\frac{40\sqrt{7}}{140} =\frac{2\sqrt{7}}{7} $
| 7a-4=8+3a | | Y=1/4x22 | | -8(x+6)=4(x-6)= | | 10+3r=-11 | | -3b+1=20 | | 3x+-7=10x | | 3d-1/2=8 | | 33=2x+5 | | 12(x+8)=-3(x-47)= | | 86-2x=68+4x | | -g+3g=-6 | | -11=3-2u | | 35x+2=25x-5 | | 55.2+(2x-4)=90 | | 7=5/6c | | -9(x-7)=3(x+5)= | | 57=3(4v+1)+2v | | -2(w+5)=-22 | | -67=6.7z | | 4f+4=6f-2 | | -4(4x+5)-5=-4(x+1)+2x | | -7(2-4x)=16 | | 15+10x=14x | | 9(q-4)=81 | | 3(3x-4)=6x-9 | | -8(2+x)=-24 | | X-5=2√(x+3) | | 8(x-4)=-4(x-16)= | | 8=v/8+1 | | 3x=2x=50=180 | | 3+8x=3x(3) | | -4x-5-8x+10=8 |